A new algorithm for constraint satisfaction problems with Maltsev templates
نویسندگان
چکیده
In this article, we provide a new algorithm for solving constraint satisfaction problems with Maltsev constraints, based on the new notion of Maltsev consistency.
منابع مشابه
Kernelization of Constraint Satisfaction Problems: A Study Through Universal Algebra
A kernelization algorithm for a computational problem is a procedure which compresses an instance into an equivalent instance whose size is bounded with respect to a complexity parameter. For the constraint satisfaction problem (CSP), there exist many results concerning upper and lower bounds for kernelizability of specific problems, but it is safe to say that we lack general methods to determi...
متن کاملA New Method for Solving Constraint Satisfaction Problems
Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling means assigning a value to a variable.) Solu...
متن کاملA New Method for Solving Constraint Satisfaction Problems
Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling" means assigning a value to a variable.) Sol...
متن کاملOn Maltsev Digraphs
We study digraphs preserved by a Maltsev operation: Maltsev digraphs. We show that these digraphs retract either onto a directed path or to the disjoint union of directed cycles, showing in this way that the constraint satisfaction problem for Maltsev digraphs is in logspace, L. We then generalize results from Kazda (2011) to show that a Maltsev digraph is preserved not only by a majority opera...
متن کاملDeciding some Maltsev conditions in finite idempotent algebras
In this paper we investigate the computational complexity of deciding if a given finite algebraic structure satisfies a certain type of existential condition on its set of term operations. These conditions, known as Maltsev conditions, have played a central role in the classification, study, and applications of general algebraic structures. Several well studied properties of equationally define...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.08311 شماره
صفحات -
تاریخ انتشار 2017